Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nurziana Ngah,* Mohammad B. Kassim and Bohari M. Yamin

School of Chemical Sciences and Food
Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
nurziana_ngah@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.104$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(3-Benzoylthioureido) propionic acid

The molecular structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, adopts a cis-trans configuration with respect to the positions of the propionic acid and benzoyl groups relative to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds. In the crystal structure, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming a one-dimensional chain parallel to the b axis.

Comment

The title compound, (I), is isomorphous with 3-(3-benzoylthioureido)propionic acid (Yusof \& Yamin, 2003); they differ in that the 3-benzoylthioureido group is attached to the β alanine group in the latter compound. The molecular structure adopts a cis-trans configuration with respect to the positions of the propionic acid and benzoyl groups relative to the S atom across the $\mathrm{C} 8-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{N} 1$ bonds, respectively.

(I)

The bond lengths and angles (Table 1) are in normal ranges (Allen et al.,1987) and comparable with those in the β-alanine derivative. The central carbonylthiourea group (S1/C8/N1/N2/ C 7), and the phenyl ($\mathrm{C} 1-\mathrm{C} 6$) and ethanoic acid fragments are planar, with a maximum deviation of 0.037 (2) A for atom C7. The central carbonylthiourea group makes dihedral angles

Figure 1
The molecular structure of the title compound, (I), with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Received 21 November 2005 Accepted 28 November 2005 Online 23 December 2005

Figure 2
Packing diagram of compound (I), viewed down the c axis. The dashed lines denote $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
with the phenyl and ethanoic acid fragments of 27.52 (9) and $24.20(12)^{\circ}$, respectively. The phenyl ring is inclined to the ethanoic acid fragment by 4.19 (4) ${ }^{\circ}$.

There are three intramolecular hydrogen bonds C9$\mathrm{H} 9 \cdots \mathrm{~S} 1, \mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$ and $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$ (Table 2) and, as a result, two pseudo-five-membered rings ($\mathrm{C} 9-\mathrm{H} 9-\mathrm{S} 1-$ $\mathrm{C} 8-\mathrm{N} 2)$, ($\mathrm{N} 2-\mathrm{H} 2 A-\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 9$) and a pseudo-sixmembered ring ($\mathrm{N} 2-\mathrm{H} 2 A-\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$) are formed (Fig. 1). In the crystal structure, the molecules are linked by intermolecular contacts, $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3^{\mathrm{ii}}$ (see Table 2 for symmetry codes), forming a one-dimensional chain parallel to the b axis (Fig. 2).

Experimental

A solution of 2-aminopropionic acid ($4.45 \mathrm{~g}, 0.05 \mathrm{~mol}$) in acetone (20 ml) was added dropwise to an acetone solution (20 ml) containing an equimolar amount of benzoyl isothiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 5 h and then filtered into a beaker containing ice. The yellow precipitate was washed with cold acetone-distilled water, before being dried and kept in a desiccator (yield 10.72 g , 85%, m.p. 430-431 K). Recrystallization from acetonitrile yielded single crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=252.29$
Triclinic, $P \overline{1}$
$a=7.3570(18) \AA$
$b=8.083(2) \AA$
$c=10.706(3) \AA$
$\alpha=87.395(4)^{\circ}$
$\beta=77.128(4)^{\circ}$
$\gamma=72.065(5)^{\circ} \AA^{\circ}$
$V=590.3(3) \AA^{3}$

$Z=2$

$D_{x}=1.419 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 835 reflections
$\theta=1.9-25.0^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.49 \times 0.33 \times 0.31 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.878, T_{\text {max }}=0.920$
5591 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0479 P)^{2}\right. \\
& \quad+0.2021 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.104$
$S=1.11$
2076 reflections
156 parameters
H -atom parameters constrained
1.385 (2) 1.385 (2)
1.315 (2)
1.454 (2)

$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7$	$128.30(16)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$123.69(14)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$122.46(15)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$118.56(14)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$117.74(16)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9 . .S1	0.98	2.67	3.033 (2)	102
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.01	2.669 (2)	133
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}$	0.86	2.39	2.698 (2)	102
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\text {i }}$	0.82	2.32	3.1190 (16)	166
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.30	3.180 (3)	158

Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$.

H atoms were positioned geometrically $[\mathrm{O}-\mathrm{H}=0.82, \mathrm{~N}-\mathrm{H}=0.86$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ (methyl)] and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ (1.5 methyl and hydroxyl) $U_{\mathrm{eq}}(\mathrm{C} / \mathrm{N} / \mathrm{O})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Vesion 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXTL V5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M. \& Yamin, B. M. (2003). Acta Cryst. E59, o828-o829.

